Deep Deterministic Policy Gradient (DDPG)
Overview
DDPG is a popular DRL algorithm for continuous control. It runs reasonably fast by leveraging vector (parallel) environments and naturally works well with different action spaces, therefore supporting a variety of games. It also has good sample efficiency compared to algorithms such as DQN.
Original paper:
Reference resources:
Implemented Variants
Variants Implemented | Description |
---|---|
ddpg_continuous_action.py , docs |
For continuous action space. Also implemented Mujoco-specific code-level optimizations |
Below are our single-file implementations of PPO:
ddpg_continuous_action.py
The ddpg.py has the following features:
- For continuous action space. Also implemented Mujoco-specific code-level optimizations
- Works with the
Box
observation space of low-level features - Works with the
Box
(continuous) action space
Usage
poetry install
poetry install -E pybullet
python cleanrl/ddpg_continuous_action.py --help
python cleanrl/ddpg_continuous_action.py --env-id HopperBulletEnv-v0
poetry install -E mujoco # only works in Linux
python cleanrl/ddpg_continuous_action.py --env-id Hopper-v3
Explanation of the logged metrics
Running python cleanrl/ddpg_continuous_action.py
will automatically record various metrics such as various losses in Tensorboard. Below are the documentation for these metrics:
charts/episodic_return
: episodic return of the gamecharts/SPS
: number of steps per secondlosses/qf1_loss
: the MSE between the Q values at timestep \(t\) and the target Q values at timestep \(t+1\), which minimizes temporal difference.losses/actor_loss
: implemented as-qf1(data.observations, actor(data.observations)).mean()
; it is the negative average Q values calculated based on the 1) observations and the 2) actions computed by the actor based on these observations. By minimizingactor_loss
, the optimizer updates the actors paramater using the following gradient (Lillicrap et al., 2016, Equation 6)1:
losses/qf1_values
: implemented as `qf1(data.observations, data.actions).view(-1); it is the average Q values of the sampled data in the replay buffer; useful when gauging if under or over esitmations happen
Implementation details
Our ddpg_continuous_action.py
is based on the OurDDPG.py
from sfujim/TD3, which presents the the following implementation difference from (Lillicrap et al., 2016)1:
-
ddpg_continuous_action.py
uses a gaussian exploration noise \(\mathcal{N}(0, 0.1)\), while (Lillicrap et al., 2016)1 uses Ornstein-Uhlenbeck process with \(\theta=0.15\) and \(\sigma=0.2\). -
ddpg_continuous_action.py
runs the experiments using theopenai/gym
MuJoCo environments, while (Lillicrap et al., 2016)1 uses their proprietary MuJoCo environments. -
ddpg_continuous_action.py
uses the following architecture:while (Lillicrap et al., 2016, see Appendix 7 EXPERIMENT DETAILS)1 uses the following architecture (difference highlighted):class QNetwork(nn.Module): def __init__(self, env): super(QNetwork, self).__init__() self.fc1 = nn.Linear(np.array(env.single_observation_space.shape).prod() + np.prod(env.single_action_space.shape), 256) self.fc2 = nn.Linear(256, 256) self.fc3 = nn.Linear(256, 1) def forward(self, x, a): x = torch.cat([x, a], 1) x = F.relu(self.fc1(x)) x = F.relu(self.fc2(x)) x = self.fc3(x) return x class Actor(nn.Module): def __init__(self, env): super(Actor, self).__init__() self.fc1 = nn.Linear(np.array(env.single_observation_space.shape).prod(), 256) self.fc2 = nn.Linear(256, 256) self.fc_mu = nn.Linear(256, np.prod(env.single_action_space.shape)) def forward(self, x): x = F.relu(self.fc1(x)) x = F.relu(self.fc2(x)) return torch.tanh(self.fc_mu(x))
class QNetwork(nn.Module): def __init__(self, env): super(QNetwork, self).__init__() self.fc1 = nn.Linear(np.array(env.single_observation_space.shape).prod(), 400) self.fc2 = nn.Linear(400 + np.prod(env.single_action_space.shape), 300) self.fc3 = nn.Linear(300, 1) def forward(self, x, a): x = F.relu(self.fc1(x)) x = torch.cat([x, a], 1) x = F.relu(self.fc2(x)) x = self.fc3(x) return x class Actor(nn.Module): def __init__(self, env): super(Actor, self).__init__() self.fc1 = nn.Linear(np.array(env.single_observation_space.shape).prod(), 400) self.fc2 = nn.Linear(400, 300) self.fc_mu = nn.Linear(300, np.prod(env.single_action_space.shape)) def forward(self, x): x = F.relu(self.fc1(x)) x = F.relu(self.fc2(x)) return torch.tanh(self.fc_mu(x))
-
ddpg_continuous_action.py
uses the following learning rates:while (Lillicrap et al., 2016, see Appendix 7 EXPERIMENT DETAILS)1 uses the following learning rates:q_optimizer = optim.Adam(list(qf1.parameters()), lr=3e-4) actor_optimizer = optim.Adam(list(actor.parameters()), lr=3e-4)
q_optimizer = optim.Adam(list(qf1.parameters()), lr=1e-4) actor_optimizer = optim.Adam(list(actor.parameters()), lr=1e-3)
-
ddpg_continuous_action.py
uses--batch-size=256 --tau=0.005
, while (Lillicrap et al., 2016, see Appendix 7 EXPERIMENT DETAILS)1 uses--batch-size=64 --tau=0.001
Experiment results
PR vwxyzjn/cleanrl#137 tracks our effort to conduct experiments, and the reprodudction instructions can be found at vwxyzjn/cleanrl/benchmark/ddpg.
Below are the average episodic returns for ddpg_continuous_action.py
(3 random seeds). To ensure the quality of the implementation, we compared the results against (Fujimoto et al., 2018)2.
Environment | ddpg_continuous_action.py |
OurDDPG.py (Fujimoto et al., 2018, Table 1)2 |
DDPG.py using settings from (Lillicrap et al., 2016)1 in (Fujimoto et al., 2018, Table 1)2 |
---|---|---|---|
HalfCheetah | 9260.485 ± 643.088 | 8577.29 | 3305.60 |
Walker2d | 1728.72 ± 758.33 | 3098.11 | 1843.85 |
Hopper | 1404.44 ± 544.78 | 1860.02 | 2020.46 |
Info
Note that ddpg_continuous_action.py
uses gym MuJoCo v2 environments while OurDDPG.py
(Fujimoto et al., 2018)2 uses the gym MuJoCo v1 environments. According to the openai/gym#834, gym MuJoCo v2 environments should be equivalent to the gym MuJoCo v1 environments.
Also note the performance of our ddpg_continuous_action.py
seems to perform worse than the reference implementation on Walker2d and Hopper. This is likely due to openai/gym#938. We would have a hard time reproducing gym MuJoCo v1 environments because they have been long deprecated.
Learning curves:
Tracked experiments and game play videos:
-
Lillicrap, T.P., Hunt, J.J., Pritzel, A., Heess, N.M., Erez, T., Tassa, Y., Silver, D., & Wierstra, D. (2016). Continuous control with deep reinforcement learning. CoRR, abs/1509.02971. https://arxiv.org/abs/1509.02971 ↩↩↩↩↩↩↩↩
-
Fujimoto, S., Hoof, H.V., & Meger, D. (2018). Addressing Function Approximation Error in Actor-Critic Methods. ArXiv, abs/1802.09477. https://arxiv.org/abs/1802.09477 ↩↩↩↩